Don-stroitel.ru

Все о ремонте
16 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Водосброс по откосу насыпи

Водосброс по откосу насыпи

ТИПОВАЯ ТЕХНОЛОГИЧЕСКАЯ КАРТА (ТТК)

ПОДЪЕЗДНАЯ АВТОМОБИЛЬНАЯ ДОРОГА СО СПЛОШНЫМ ПОКРЫТИЕМ ИЗ СБОРНЫХ ЖЕЛЕЗОБЕТОННЫХ ПЛИТ

УСТРОЙСТВО СБРОСОВ ВОДЫ С ПРОЕЗЖЕЙ ЧАСТИ

I. ОБЛАСТЬ ПРИМЕНЕНИЯ

1.1. Типовая технологическая карта (именуемая далее по тексту ТТК) — комплексный организационно-технологический документ, разработанный на основе методов научной организации труда, предназначенный для использования при разработке Проектов производства работ (ППР), Проектов организации строительства (ПОС) и другой организационно-технологической документации в строительстве.

ТТК может использоваться для правильной организации труда на строительном объекте, определения состава производственных операций, наиболее современных средств механизации и способов выполнения работ по конкретно заданной технологии.

ТТК является составной частью Проектов производства работ (далее по тексту — ППР) и используется в составе ППР согласно МДС 12-81.2007.

1.2. В настоящей ТТК приведены указания по организации и технологии производства дорожно-строительных работ по устройству сбросов воды с проезжей части автомобильной дороги бетонными телескопическими лотками по откосу насыпи.

Определён состав производственных операций, разработаны требования к контролю качества и приёмке работ, рассчитаны плановая трудоёмкость работ, потребность в трудовых, производственных и материальных ресурсах, описаны мероприятия по промышленной безопасности и охране труда.

1.3. Нормативной базой для разработки технологической карты являются:

— строительные нормы и правила (СНиП, СН, СП);

— заводские инструкции и технические условия (ТУ);

— нормы и расценки на строительно-монтажные работы (ГЭСН-2001 ЕНиР);

— производственные нормы расхода материалов (НПРМ);

— местные прогрессивные нормы и расценки, нормы затрат труда, нормы расхода материально-технических ресурсов.

1.4. Цель создания ТТК — дать рекомендуемую нормативными документами схему технологического процесса дорожно-строительных работ по устройству сбросов воды с проезжей части автомобильной дороги бетонными телескопическими лотками по откосу насыпи, для обеспечения их высокого качества, а также:

— снижение себестоимости работ;

— сокращение сроков строительства;

— обеспечение безопасности выполняемых работ;

— организации ритмичной работы;

— рациональное использование трудовых ресурсов и машин;

— унификации технологических решений.

1.5. На базе ТТК в составе ППР (как обязательные составляющие Проекта производства работ) разрабатываются Рабочие технологические карты (РТК) на выполнение отдельных видов дорожно-строительных работ (СНиП 3.01.01-85* "Организация строительного производства") по устройству сбросов воды с проезжей части автомобильной дороги бетонными телескопическими лотками по откосу насыпи.

Конструктивные особенности их выполнения решаются в каждом конкретном случае Рабочим проектом. Состав и степень детализации материалов, разрабатываемых в РТК, устанавливаются соответствующей подрядной строительной организацией, исходя из специфики и объема выполняемых работ.

РТК рассматриваются и утверждаются в составе ППР руководителем Генеральной подрядной строительной организации.

1.6. ТТК можно привязать к конкретному объекту и условиям строительства. Этот процесс состоит в уточнении объемов работ, средств механизации, потребности в трудовых и материально-технических ресурсах.

Порядок привязки ТТК к местным условиям:

— рассмотрение материалов карты и выбор искомого варианта;

— проверка соответствия исходных данных (объемов работ, норм времени, марок и типов механизмов, применяемых строительных материалов, состава звена рабочих) принятому варианту;

— корректировка объемов работ в соответствии с избранным вариантом производства работ и конкретным проектным решением;

— пересчёт калькуляции, технико-экономических показателей, потребности в машинах, механизмах, инструментах и материально-технических ресурсах применительно к избранному варианту;

— оформление графической части с конкретной привязкой механизмов, оборудования и приспособлений в соответствии с их фактическими габаритами.

1.7. Типовая технологическая карта разработана для нового строительства и предназначена для инженерно-технических работников (производителей работ, мастеров, бригадиров) и рабочих на дорожно-строительных работах, выполняющих работы во II-й дорожно-климатической зоне, с целью ознакомления (обучения) их с правилами производства дорожно-строительных работ по устройству сбросов воды с проезжей части автомобильной дороги бетонными телескопическими лотками по откосу насыпи, с применением наиболее прогрессивных и рациональных решений по организации, технологии и механизации дорожных работ.

Основные параметры насыпи земляного полотна автомобильной дороги

— высота насыпи до 12,00 м;

— протяженность насыпи земляного полотна =500 м;

— длина откоса насыпи =19,50 м.

Рис.1. Поперечный профиль земляного полотна Тип 3

II. ОБЩИЕ ПОЛОЖЕНИЯ

2.1. Технологическая карта разработана на комплекс дорожно-строительных работ по устройству сбросов воды с проезжей части автомобильной дороги бетонными телескопическими лотками по откосу насыпи.

2.2. Дорожно-строительные работы по устройству сбросов воды с проезжей части автомобильной дороги бетонными телескопическими лотками по откосу насыпи, выполняются в одну смену, продолжительность чистого рабочего времени в течение 10-часовой смены составляет:

час.

2.3. В состав дорожно-строительных работ, последовательно выполняемых при устройстве сбросов воды с проезжей части автомобильной дороги бетонными телескопическими лотками по откосу насыпи, входят следующие производственные операции:

— устройство водосборника на обочине;

— устройство водосброса по откосу;

— устройство гасителя у подошвы насыпи;

2.4. Технологической картой предусмотрено выполнение работ комплексной, бригадой, имеющий в своем составе следующие машины и механизмы: стреловой полноповоротный автомобильный кран КС-3577-3 (=14,0 т, =15,5 т, =14,0 м); экскаватор-погрузчик JCB 3CX m (объем ковша g=0,28 м , глубина копания =5,46 м); автомобиль-самосвал КамАЗ-55111 (грузоподъемность Q=13 т); вибротрамбовка TSS-HCR60K (вес Р=60 кг); виброплита TSS-VP90N (вес Р=90 кг, глубина уплотнения h=150 мм до Ку=0,95); бетономешалка Al-Ko TOP 1402 GT (m=48 кг, объем загрузки V=90 л); электростанция Honda ET12000 (бензиновая, трехфазная 380/220 В, N=11 кВт, m=150 кг); бензиновая виброрейка TCC VTH-1.2 (l=1,2 м, m=18 кг, =1,2 л.с.).

XI. Расчеты поверхностного водоотвода с проезжей части автомобильных дорог

Одной из задач проектирования современных автомагистралей является обеспечение отвода поверхностных вод от конструктивных элементов дороги.

Для обеспечения отвода воды с проезжей части автомагистралей устраивают водосбросные лотки вдоль кромки проезжей части с внешней её стороны. Поперечный уклон проезжей части на каждой полосе (для одностороннего движения) назначают в сторону этих лотков, а величину уклона назначают в зависимости от категории автомагистрали по СНиП II-Д.5-62. Подобные лотки запроектированы и построены на многих современных автомагистралях.

Сброс воды из прикромочных лотков проектируют поперечными выпусками в виде водосбросных лотков, размещаемых на откосах насыпей. Лотки на откосах устраивают по типу малых телескопических лотков, конструкция которых разработана Союздорпроектом и рекомендована для типового применения на автомагистралях.

Для организованного и быстрого сброса поверхностных вод с широких разделительных полос автомагистралей на них устраивают вогнутый поперечный профиль. Для приема и сброса воды с разделительной полосы применяют дождеприемные колодцы и асбестоцементные трубы для выпуска воды из колодцев за пределы земляного полотна.

На подходах к мостам и путепроводам сброс воды с разделительной полосы проектируют по лотку, устраиваемому по конусу насыпи у мостов и путепроводов. Лотки в этих случаях устраивают в виде длинномерных телескопических лотков.

Читайте так же:
Расчет устойчивости откоса уступа

Для отвода воды, стекающей с откосов выемок, и отвода её вдоль откосов насыпей проектируют водоотводные канавы. При продольных уклонах более 5 % и скоростях течения свыше 6 м/сек. Взамен быстротоков проектируют длинномерные телескопические лотки, производя соответствующие гидравлические расчеты.

Конструкции лотков у кромок проезжей части, малых и длинномерных телескопических лотков, а также гасителей на выходе из них разработаны Союздорпроектом и приведены в «Альбоме водоотводных устройств на железных и автомобильных дорогах общей сети Союза ССР». Инв. № 819.

Чтобы осуществить водоотвод с поверхности дороги типовыми конструкциями лотков необходимо знать минимальные расстояния между водосбросными сооружениями, что в свою очередь требует определения максимально допустимой пропускной способности водоотводных устройств и установления расчетных максимальных расходов притока воды.

Для решения такой задачи в Союздорпроекте были детально изучены существующие методы расчета стока, условия и особенности поверхностного стекания применительно к конструктивным схемам поперечных сечений дорог I — V технических категорий, а также сформулированы теоретические предпосылки расчетов, на основании которых и были установлены необходимые величины минимальных расстояний между водосбросными сооружениями (см. табл. 4, 5, 6).

Вероятность превышения (ВП) расчетного расхода при расчете водоотводных сооружений, обеспечивающих сток воды с поверхности дороги, следует принимать для дорог I и II категорий — 1 %, для дорог III категории — 2 %, для дорог IV — V — 3 %.

Величину максимального ливневого расхода в м3/сек находят по формуле (1) гл. IX, в которой

F — площадь водосбора, км2;

KJ — коэффициент изменения величины максимального расхода от наклона поверхности стекания (табл. 2);

ap — расчетная интенсивность дождя требуемой ВП при расчетной его продолжительности (табл. 3);

φ — коэффициент редукции поверхностного стока, зависящий от площади водосборов;

F км2 0,0001 0,001 0,005 0,01 0,05 0,1

φ 0,98 0,91 0,86 0,81 0,75 0,69

d0 — коэффициент потерь стока, определяемый для следующих поверхностей стекания: d0

Асфальтобетонная и цементобетонная 1,0 — 0,9

Щебеночная и гравийная с пропиткой битумом 0,9 — 0,85

Грунтовая, спланированная с травяной растительностью 0,85 — 0,80

Площадь водосбора определяют по формуле:

где B, L — соответственно ширина и длина водосбора, км.

Минимальное расстояние сброса воды от водораздельной точки поперечного сечения дороги до оси продольного сбросного лотка определяют независимо от категории дороги по следующей формуле:

B = Bп + Bл/2 + ∆b (2)

где Bп — ширина проезжей части;

Bл — ширина лотка, принимаемая для дорог I — II категорий равной 0,75 м, для дорог III категории — 0,50 м;

∆b — дополнительное уширение (для дорог I категории при разделительной полосе шириной 2 м принимаемое равным 1,0 м).

В случаях устройства водосбросного лотка у кромки укрепленной обочины в формуле (3) необходимо дополнительно учитывать её ширину. Ширину укрепленной обочины принимают для дорог I категории равной 2,25 м. Для разделительной полосы ширину водосбора устанавливают для каждого случая индивидуально.

Расчетную продолжительность дождя tр (в мин.) принимают равной суммарному времени поверхностной концентрации при стекании по поверхности дороги в продольный водоотводный лоток tл и времени добегания по продольному водоотводному лотку:

Время поверхностной концентрации в мин. при стекании воды по поверхности дороги определяют по формуле:

где B — имеет то же обозначение, что и в формуле (2) и определяют в м;

cosφ — коэффициент, учитывающий изменение средней скорости стекания за счет растекания воды под углом к нормальному направлению поперечного уклона проезжей части. Угол растекания зависит от продольного и поперечного уклонов дороги и изменяется в зависимости от их различного сочетания в пределах 45 — 60°;

υ — скорость стекания с поверхности дороги, её определяют с учетом характера поверхностного стока по формуле равномерного течения при максимальном слое одновременного стока, равном 0,01 м при расчетном дожде 1 % ВП.

При вычислении скорости стекания в качестве расчетного применяют уклон по направлению расчетного угла растекания:

где Jпр — продольный уклон дороги;

Jпо — средневзвешенный поперечный уклон для проезжей части (Jп), обочин (Jо) и дополнительных полос на вираже, принимается с учетом данных табл. 1.

Данные о выборе уклонов дороги

Категория дорогиJп
I — III0,040,02
IV — V0,050,03

Расчетами установлено, что для дорог I — V категорий время поверхностной концентрации при стекании в продольный лоток составляет 0,25 — 1,19 мин. в зависимости от длины участка стекания и его уклона.

Время добегания воды в мин. по водоотводному лотку, устраиваемому вдоль дороги, определяют исходя из условия равномерного движения и нелинейного очертания кривой свободной поверхности воды с переменной глубиной заполнения живого сечения лотка по длине стекания по формуле:

где n — расчетный коэффициент шероховатости;

L — длина расчетного лотка с уклоном;

K — коэффициент учета переменного заполнения лотка, определяется по формуле:

где R1, R2, R3 — гидравлический радиус на каждом из трех расчетных участков лотка;

J1, J2, J3 — уклоны на расчетных участках.

При принятой схематизации построения кривой свободной поверхности, рассчитываемой по трем одинаковой длины участкам (1, 2, 3) и при конструктивно обусловливаемом расчетном заполнении живого сечения лотка в замыкающем створе средние глубины этих участков могут быть приняты постоянными по участкам независимо от общей длины лотка.

В результате расчетов установлено, что время добегания по продольному лотку длиной от 30 до 100 м и при уклоне 0,003 колеблется от 1,5 до 5 мин., а при длине лотка от 100 до 200 м — от 5,0 до 9,3 мин.

При длине лотка, равной 100 м и продольных уклонах дороги от 0,003 до 0,07, время добегания уменьшается от 5,0 до 1,43 мин.

Уменьшение времени добегания воды по лотку с увеличением продольного уклона дороги (J1) характеризует изменение расчетной продолжительности дождя (по сравнению с условиями стока, формирующимися при уклоне поверхности стекания, равном 0,003), которое независимо от длины лотка составляет:

J 0,003 0,01 0,02 0,03 0,04 0,05 0,06 0,07

1,0 0,75 0,53 0,44 0,37 0,33 0,31 0,28

Несколько иные данные получены для аналогичных соотношений суммарного времени добегания с учетом времени стекания по поверхности дороги. Так, в интервале осредненных значений времени поверхностного стекания tп, равном 0,25 — 0,95 мин. для дорог I — IV категорий, соотношение для продольного уклона J = 0,07 при длине лотка, до 30 м изменяется от 0,39 до 0,56. При больших длинах продольного лотка (от 30 до 200 м) это соотношение более устойчиво и колеблется от 0,32 до 0,36 для уклона 0,07.

Читайте так же:
Технология укладки террасной доски из ДПК

Анализ расчетных данных показал, что с уменьшением площади водосбора продолжительность расчетного дождя уменьшается, как уменьшается и его зависимость от уклона поверхности стекания.

При увеличении площади водосбора с увеличением расчетной продолжительности дождя соотношение времени расчетного дождя в зависимости от уклона почти не изменяется по сравнению с приведенными выше данными для добегания воды по продольному лотку.

Проведенные исследования позволили установить зависимость коэффициента KJ от наклона поверхностей стекания (табл. 2), а также расчетные интервалы времени формирования максимальных расходов tф для различных площадей водосборов:

F, км2 0,0001 0,0005 0,0010 0,005 0,01

tф, мин. 4 6 9 14 19

Значение коэффициента KJ

Продольный уклон дороги, %

Для установленных интервалов времени формирования максимального стока вычислены величины расчетных интенсивностей ливней (табл. 3) и произведено ливневое районирование территории СССР (рис. 39) с учетом особенностей распределения осадков во времени и по территории.

Для продольных уклонов дороги от 0,003 до 0,07 определена пропускная способность лотков устраиваемых из блоков Б-1 и Б-3.

Пропускная способность лотков на разделительной полосе дороги зависит от типа их укрепления и геометрических размеров и определена из условия назначения скорости воды в лотке менее или равной неразмывающей для данного типа укрепления или грунтов русла.

При сравнении поперечных сечений блоков Б-1, Б-3 и малых телескопических лотков установлено, что при уклонах 0,008 и более пропускная способность телескопических лотков наименьшая.

Рис. 39. Схема ливневых районов для расчета поверхностного водоотвода.

Установленные интервалы времени формирования максимального стока

Площади водосборов, км 2

Эта величина пропускной способности является определяющей при установлении минимальных расстояний между водосбросами.

При продольных уклонах менее 0,008 наименьшей является пропускная способность лотков Б-1 и Б-3, которая изменяется в зависимости от продольных уклонов дороги и определяет минимальные расстояния между поперечными водосбросами для любых значений уклонов в этом интервале.

На затяжных уклонах более 0,03 из-за больших скоростей стекания наблюдается частичный проход воды мимо мест входа в телескопические лотки, расход которых при уклонах дороги 0,06 — 0,07 составляет 10 — 20 % от величины максимальной пропускной способности этих лотков, что уменьшает фактическую пропускную способность одних лотков и увеличивает её на других из-за переполнения продольных лотков.

Учет этого обстоятельства вызывает необходимость дополнительного уменьшения расстояний между поперечными водосбросами на этих участках, что может быть достигнуто уменьшением расчетной величины пропускной способности телескопических лотков.

Для продольных уклонов дорог от 0,03 до 0,07 приняты следующие значения расчетных величин пропускной способности телескопических лотков при их фактическом заполнении в начальном сечении:

J 0,03 0,04 0,05 0,06 0,07

Qп м3/сек 0,04 0,039 0,037 0,036 0,034

Некоторое уменьшение расстояний на затяжных участках дорог с уклонами более 0,03 вызвано также и необходимостью более быстрого отвода воды для обеспечения безопасности автотранспорта на крутых спусках с большими скоростями движения.

Для четырех климатических районов и различных размеров водосборных площадей, ограниченных интервалом ширин 3 — 25 — 18,0 м и длиной от 30 до 300 м, и продольных уклонов от 0,003 до 0,06 вычислены расходы отдельно для поверхностей стекания и разделительных полос применительно к параметрам дорог I — III категорий.

Определение минимальных расстояний между водосбросами произведено по величинам расчетной пропускной способности и графиком зависимости расходов от длин водосборов, построенным для каждой категории дороги, заданных в диапазоне 0,3 — 6 % уклонов и ВП стока.

Исходя из производственной целесообразности, полученные таким образом величины расстояний, были стандартизированы с точностью до 5 м.

Рекомендуемые расстояния между водосбросами приведены в табл. 4, 5, 6. Ширина разделительной полосы в табл. 5 и 6 принята равной 12,5 м.

Приведенные в табл. 6 расстояния применяют только для системы лотков Б-1, Б-3 и телескопических конструкций лотков, разработанных Союздорпроектом для типового «Альбома водоотводных устройств на железных и автомобильных дорогах общей сети Союза ССР», а также для сооружений, аналогичных рассмотренным и приведенных в других типовых проектах.

Однако в практике проектирования могут возникнуть случаи, когда требуется произвести расчеты для обеспечения поверхностного водоотвода индивидуально, например, для дорог IV — V категорий, при увеличении числа полос движения или ширины разделительной полосы, для других конструкций водосбросных сооружений и т.п. Для всех этих случаев определение расстояний между водосбросными сооружениями может быть выполнено по данному способу.

Телескопические лотки на откосах устраивают при продольных уклонах дороги, равных 0,3 % и более. Расстояние между лотками для различных величин продольных уклонов дороги определяют по табл. 4 путем интерполяции. Независимо от продольных уклонов дороги необходимо предусматривать постановку телескопических лотков перед водопропускными сооружениями.

Пособие по проектированию земляного полотна и водоотвода железных и автомобильных дорог промышленных предприятий (к СНиП 2.05.07-85). Часть 3

2.144. Выемки глубиной до 6 м в вечномерзлых грунтах III категории термопросадочности на ландшафтах со сливающейся мерзлотой следует проектировать с заменой грунта основной площадки на дренирующий на глубину по расчету; откосы следует покрывать торфом или пенопластом и суглинком толщиной 0,5 м с посевом дикорастущих трав. Поперечный уклон дна котлована следует назначать 0,01, а продольный — 0,005 — 0,01 (рис. 37). Выемки в грунтах IV категории термопросадочности не допускаются.

Рис. 37. Конструкция выемки глубиной до 6 м на вечномерзлых грунтах III категории термопросадочности с заменой на дренирующий грунт и термоизоляцией откосов пенопластом или торфом

1 — поверхность горизонта вечной мерзлоты до сооружения выемки; 2 — новообразованная поверхность мерзлоты; 3 — мохово-растительный слой; 4 — валик из грунта; 5 — пенопласт или торф по расчету; 6 — торфопесчаная смесь; 7 — дренирующий грунт, h з — глубина замены на дренирующий грунт

2.145. Выемки в вечномерзлых глинистых грунтах и пылеватых песках II категории термопросадочности, а также в галечниковых и гравийных грунтах с суглинистым и супесчаным заполнителями III категории термопросадочности следует проектировать по типовому профилю, приведенному на рис. 38, с заменой грунта на дренирующий и устройством закюветной полки шириной 1 м с уклоном 0,02 и укладкой на откосах слоя торфопесчаной смеси 0,15 — 0,20 м с посевом дикорастущих трав.

Рис. 38. Конструкция выемки глубиной до 6 м в вечномерзлых глинистых грунтах и песках пылеватых I и II категории термопросадочности, а также в гравийных грунтах с супесчаным заполнителем III категории термопросадочности, с заменой грунта на дренирующий

Читайте так же:
Как рассчитать откос котлована

1 — поверхность горизонта вечной мерзлоты до постройки выемки; 2 — новообразованная поверхность мерзлоты; 3 — мохово-растительный слой; 4 — валик из грунта; 5 — торфопесчаная смесь; 6 — закюветная полка; 7 — дренирующий грунт; S — осадка основания земляного полотна

2.146. В выемках глубиной до 6 м, сооружаемых на уклоне местности менее 1:10 на сильноснегозаносимых участках, в вечномерзлых грунтах I и II категории термопросадочности, крутизну откосов следует принимать: при глубине выемки 1 — 3 м — 1:4, 3 — 5 м — 1:3.

В вечномерзлых грунтах III категории термопросадочности крутизну откосов выемок следует назначать на основании технико-экономического сравнения вариантов раскрытия выемок и устройства снегозащитных сооружений.

Водоотводы на вечномерзлых грунтах

2.147. Допускается устройство продольных водоотводных канав вдоль насыпей на расстоянии 5 — 10 м от их подошв на участках грунтов I и II категории термопросадочности и продольном уклоне местности не более 0,004 с обязательным укреплением их геотекстилем, прикрытым песчано-гравийной смесью.

В полосе трассы шириной 20 — 30 м в каждую сторону от оси участки с термокарстовыми озерами, котлованами, с залеганием повторно-жильных льдов, бугристо-западинного микрорельефа и др. должны быть засыпаны местным грунтом или торфогрунтовой смесью с уплотнением.

2.148. Откосы насыпей, сооружаемых из мелких или пылеватых песков на неподтопляемых участках, укрепляются слоем 0,1 — 0,3 м торфогрунтовой смеси: торфа — 30%, суглинка — 70%, или торфа — 40%, песка — 60%, или укрепляются обсыпкой скальным грунтом толщиной 0,5 м и более. При укреплении откосов насыпи скальным, щебенистым, гравийно-галечниковым грунтом толщину слоя торфогрунтовой смеси назначают не менее 0,3 м в зависимости от состояния и свойств грунтов, слагаемых откосы.

2.149. Откосы выемок в твердомерзлых грунтах следует покрывать защитным слоем талого, сыпучемерзлого или сухомерзлого песчаного грунта толщиной не менее 0,3 м с последующим закреплением торфогрунтовой смесью или геотекстилем.

При необходимости сооружения выемок в льдонасыщенных грунтах при коэффициенте льдистости более 0,4 следует проектировать замену их на сыпуче-мерзлые или талые пески на глубину сезонно-талого слоя (по расчету) с устройствами для регулирования положения верхней границы вечной мерзлоты под основной площадкой.

2.150. Для обеспечения снегонезаносимости откосы выемок должны иметь уклон 1:4 — 1:6 и быть защищены от термоэрозии слоем талого, сыпучемерзлого или сухомерзлого грунта толщиной не менее 0,2 м с последующим их закреплением посевом дикорастущих трав.

2.151. Для укрепления откосов и бровок насыпей и выемок, сложенных мелкими и пылеватыми песками или супесями, следует применять преимущественно геотекстиль, прикрытый сверху дренирующим грунтом или торфогрунтовой смесью, с последующим посевом дикорастущих трав.

2.152. Откосы насыпей на участках пересечения водотоков термокарстовых озер или при расчетной длине разгона волны более 0,5 км следует укреплять скальным грунтом или железобетонными плитами по слою геотекстиля (см . прил. 15).

2.153. При проектировании земляного полотна с заглубленным балластным слоем на грунтах III и IV категории термопросадочности следует предусматривать замену грунта на дренирующий с надежным отводом воды из корыта дороги в ливневую канализацию (см. рис. 36).

2.154. При проектировании земляного полотна вдоль наземных и подземных коммуникаций — нефтегазопроводов, водопровода, производственных стоков в трубах, а также вдоль берега водоемов следует предусматривать мероприятия по защите земляного полотна от переувлажнения и возможных деформаций.

2.155. Для отвода поверхностной воды от земляного полотна, устраиваемого в пределах площадки промышленного предприятия, а также при высоком стоянии подземных вод должны предусматриваться лотки с продольным уклоном дна 0,5 — 3% или трубчатые дрены (трубофильтры) диаметром не менее 150 мм. При среднемесячной температуре наружного воздуха наиболее холодного месяца ниже -15 1 С следует предусматривать утепленные лотки (рис. 35).

Земляное полотно с заглубленной балластной призмой

2.156. Земляное полотно путей с заглубленной балластной призмой на спланированной территории промышленных предприятий и на застроенных территориях проектируется при наличии ливневой канализации. При этом тип поперечного профиля выбирается в зависимости от системы водоотвода и требований по возвышению бровки земляного полотна над уровнем грунтовых вод.

2.157. В случае обводнения грунтов земляного полотна за счет утечки производственных и хозяйственных вод в грунт необходимо разрабатывать комплекс инженерных мероприятий по водоотводу:

организацию стока производственных и атмосферных вод;

понижение уровня грунтовых вод дренажами;

устройство мерозозащитных слоев из геотекстилей и других материалов, предотвращающих пучение грунтов основной площадки земляного полотна;

устройство прослоек из песка и геотекстиля;

замену пучинистого грунта верхней части земляного полотна на дренирующий.

2.158. Верх земляного полотна с заглубленной (полузаглубленной) балластной призмой следует устраивать с уклоном в сторону водоотводных канав, лотков. Поперечные профили земляного полотна показаны на рис. 39, 40.

Рис. 39. Конструкция земляного полотна на планируемой территории с заглубленной балластной призмой

1 — балластная призма; 2 — граница отвода земель; 3 — кювет; h б — толщина балластного слоя

Рис. 40. Конструкция земляного полотна на планируемой территории в разных уровнях

а — без подпорной стенки; б — с подпорной стенкой; 1 — балластная призма; 2 — граница отвода земель; 3 — подпорная стенка; 4 — кювет; h б — толщина балластного слоя

2.159. При недренирующих грунтах земляное полотно, сооружаемое во II и III дорожно-климатической зоне при всех типах увлажнения; а в IV зоне при 2- и 3-м типах увлажнения (табл. 2) должны быть приняты меры по отводу воды из "корыта" с помощью дренажей и лотков (рис. 41).

Рис. 41. Конструкции земляного полотна с заглубленной балластной призмой в недренирующих грунтах

а — с отводом воды продольной трубчатой дреной и с вариантом углубленного ровика; б — с отводом воды продольным лотком; 1 — трубчатый дренаж; 2 — то же, в месте выпуска его на поверхность; 3 — железобетонный лоток; h б — толщина балластного слоя

2.160. Толщину балластного слоя под шпалой на путях с заглубленной и полузаглубленной балластной призмой назначают по указаниям СНиП 2.05.07-85, п. 2.72. Методика расчета толщины балластного слоя под шпалой при заглубленной балластной призме дана в прил. 12 настоящего Пособия.

2.161. Верх земляного полотна из дренирующих грунтов с коэффициентом фильтрации более 1 м/сут назначается горизонтальным, дренажи не устраиваются. При этом возвышение бровок основной площадки над уровнем грунтовых вод не должно определяться по табл. 3. В случае невозможности соблюдения этого условия, а также при тугопластичных и мягкопластичных грунтах, имеющих показатель консистенции более 0,25, следует разрабатывать мероприятия по осушению земляного полотна устройством дренажей глубокого заложения, изолирующих и водонепроницаемых прослоек, заменой грунта на дренирующий, имеющий коэффициент фильтрации для путей с открытой и полузаглубленной балластной призмой не менее 1 м/сут, а с заглубленной — 2 м/сут.

Читайте так же:
Как штукатурить по пенопласту

2.162. В случае сопряжения основных площадок земляного полотна, расположенных в разных уровнях с разностью отметок головок рельсов соседних путей до 15 см, уступ в земляном полотне не делается (рис. 41, в). Сопряжение земляного полотна подкрановых путей с железнодорожным показаны на рис. 42, а расстояния определяются по ГОСТ 9238-73. Сброс воды с площадки на путь не допускается.

Рис. 42. Конструкции земляного полотна при сопряжении с подкрановым путем

а — при открытой системе водоотвода; б — при закрытой системе водоотвода; в — вариант водоотвода на существующем пути; 1 — твердое покрытие складской площадки на станции; 2 — щебень; 3 — песчаная прослойка толщиной 0,05 м; 4 — подкрановый путь; 5 — ось пути; 6 — кювет; 7 — колодец ливневой канализации; 8 — дренаж (трубофильтр); h б — толщина балластного слоя; l — расстояние между путями

2.163. При строительстве железнодорожных путей на территории предприятия до производства работ по вертикальной планировке земляное полотно сооружается по временной схеме с отводом воды кюветами и водоотводными канавами (рис. 43). Этапы строительства доказаны на рис. 44.

Рис. 43. Конструкции земляного полотна вторых заглубленных путей на планируемой территории

1 — существующий путь; 2 — существующий дренаж; 3 — проектируемый дренаж; 4 — смотровой колодец; 5 — заполнение недренирующим грунтом; h б — толщина балластного слоя

Рис. 44. Схемы конструкций земляного полотна при строительстве в две очереди на спланированных территориях

а — схема укладки второго пути со стороны существующего дренажа; б — то же, с противоположной стороны; в — то же, с переходом на закрытую систему дренажа, г — для насыпи; д — для выемки; 1 — контур первой очереди строительства; 2 — существующий дренаж; 3 — смотровой, колодец; 4 — существующий путь; 5 — засыпка глинистым грунтом; 6 — контур планировки; 7 — балласт второй очереди укладки пути; 8 — балласт первой очереди; 9 — засыпка второй очереди; 10 — планировка на второй очереди; 11 — трубофильтр; h б — толщина балластного слоя

2.164. Конструкции земляного полотна для одного пути, проектируемого около высокой платформы на станции и погрузочно-разгрузочных путях, приведены на рис. 45, а вдоль стены здания на территории промышленного предприятия и на станциях — на рис. 46. Поверхностный отвод атмосферной воды осуществляется железобетонным лотком в общую систему канализации либо устройством канавы, укрепленной железобетонными плитами, или дренажа с трубофильтрами.

Рис. 45. Конструкции земляного полотна около высокой платформы

а — на планируемой территории; б — на непланируемой территории; 1 — балластная призма; 2 — трубофильтр; 3 — то же, в месте выхода трубофильтра на поверхность; 4 — канава; h б — толщина балластного слоя

Рис. 46. Конструкции земляного полотна, устраиваемого вдоль стены здания на территории промышленного предприятия или на станциях

а — с лотком; б — с дренажем из трубофильтра; 1 — балластная призма; 2 — лоток; 3 — лоток укрепленный; 4 — трубофильтр; 5 — то же, в месте выхода его на поверхность; h б — толщина балластного слоя

2.165. Конструкции земляного полотна для двух путей с заглубленной балластной призмой при отводе воды из балластного слоя приведены на рис. 47: а — с помощью дренажа и трубофильтра; б — с применением междупутного лотка.

Рис. 47. Конструкции земляного полотна для двух путей

а — при отводе воды из балластного слоя дренажем; б — то же, междупутным лотком; 1 — балластная призма; 2 — трубофильтр; 3 — то же, в месте выхода его на поверхность; 4 — лоток; S — расстояние между осями путей; h б — толщина балластного слоя

2.166. Конструкции земляного полотна для нескольких путей на станциях и погрузочно-разгрузочных путях промышленных предприятий представлены на рис. 48: а — при расположении путей в разных уровнях; б — при отводе воды продольным железобетонным лотком; в — при расположении путей в одном уровне; г — при отводе воды продольным железобетонным междупутным лотком.

Рис. 48. Конструкции земляного полотна для нескольких путей

а — при расположении путей в разных уровнях; б — то же, при отводе воды продольным лотком; в — при расположении путей в одном уровне; г — то же, при отводе воды продольным междупутным лотком; 1 — дренаж из трубофильтра; 2 — железобетонный лоток; S — расстояние между осями путей; h б — толщина балластного слоя

2.167. Поперечные типовые профили земляного полотна в разных уровнях показаны на рис. 49.

Рис. 49. Конструкции земляного полотна в разных уровнях

а — при условии соотношения h 1 h c — 0,05 м; б — при соблюдении условия h > h c — 0,05 м и при расстоянии между путями S, достаточном для устройства кювета и обеспечения соотношения S 1 + + 2 m h к + 0,4 м; в — в случае обеспечения соотношения h > h c — 0,5 м и расстоянии между путями недостаточном для устройства кювета, т.е. S < + hm + 2mh к + 0,4; 1 — лоток; h б — толщина балластного слоя

Земляное полотно постоянных путей в пределах открытых горных разработок

2.168. Земляное полотно постоянных путей в пределах открытых горных разработок следует проектировать согласно СНиП 2.05.07-85.

2.169. Ширину основной площадки следует принимать по табл. 5, а заложение откосов насыпей и выемок — согласно СНиП 2.05.07-85.

При большей высоте откосов насыпей и выемок их крутизну принимают по проекту производства горных работ с учетом инженерно-геологических свойств грунтов. Крутизну откосов на подходах к рабочим горизонтам карьеров допускается принимать по табл. 16 и 17.

Водосбросы и водоспуски

Водосбросы. Существование и эксплуатация плотинных водоемов невозможны без основных сооружений, обеспечивающих их безопасность (водосбросов) и хороших условий эксплуатации и ремонта (водоспусков). Водосбросы бывают с глубокими колодцами (шахтные, ковшевые и др.) и могут служить и для опорожнения водоема. В то же время донные водоспуски могут выполнять функцию управляемых глубинных водосбросов.

Типы конструкции водосбросов определяются топографическими, геологическими, гидрогеологическими, гидрологическими, эксплуатационными условиями. Водосбросы могут устраиваться как в берегах балки или ручья, так и в теле плотины. Береговые водосбросы располагаются обычно непосредственно около плотины и сбрасывают воду в ту же балку (ручей) или в соседний водоток (понижение). Водосбросы в теле земляных плотин располагают в русле или на пойме балки (ручья).

Основными элементами водосбросов, расположенных в берегах, являются подводящий канал криволинейного или прямолинейного очертания в плане, водосливная часть в виде водослива с широким порогом и сбросная часть в виде быстротока или многоступенчатого перепада.

Читайте так же:
Негорючий утеплитель для стен

По конструкции водосбросы подразделяются на открытые и закрытые. Водосбросы в теле плотины устраивают закрытыми (сифонные и шахтные).

Сифонный водосброс (рис. 6.5) в зависимости от расхода устраивают из железобетонных, металлических или асбестоцементных труб из одной или нескольких ниток (до 6 шт.), опор и раструбных оголовков в верхнем и нижнем бьефах. Гребень сифона располагается на отметке нормального подпорного уровня. Входной оголовок оборудуется воздухоотводящими металлическими трубками. Верхняя кромка оголовка заглубляется на 0,2 м ниже НПУ. Нижний бьеф сооружения крепится железобетонными плитами, верхний — железобетонными плитами и камнем, уложенным в один слой. Этот тип водосброса является автоматическим. При разности бьефов от 5 до Юм его пропускная способность составляет 1,2. 5,8 м3/с по одной нитке и диаметре труб 576. 960 мм.

Рис. 6.5. Сифонный водосброс

Рис. 6.5. Сифонный водосброс (размеры указаны в м): 1 — одиночное мощение; 2 — плита крепления; 3 — раструб; 4 — опора; 5 — звенья круглых труб; 6 — гравийно-песчаная подготовка

Шахтный водосброс обычно устраивают из монолитного и сборного железобетона. Он работает в автоматическом режиме. Основными элементами конструкции являются шахта, напорный трубопровод и гаситель энергии. Гребень водослива устраивают на отметке НПУ. Напор на водосливе принимают до 0,8. 1,0 м. Для полного опорожнения водоема в нижней части шахты предусматривается отверстие, перекрываемое затвором, а при необходимости и рыбоудерживающей решеткой.

Напорный трубопровод укладывают на бетонный фундамент. Для гашения напора фильтрационного потока вдоль трубопровода устраивают диафрагмы. Гашение энергии в нижнем бьефе обеспечивается решетчатым или иным видом гасителя.

Более эффективными являются водосбросы с малыми удельными расходами воды (до 0,5 м3/с). Они более просты, более зрелищны с точки зрения ландшафтной архитектуры и удобны в эксплуатации. Водосбросы устраивают в виде лотков — быстротоков с нормальной шероховатостью.

Водосброс из монолитного бетона представляет собой лоток трапецеидального сечения с любым коэффициентом заложения откоса (обычно т = 1). Водослив, быстроток и водобойный колодец разделены швами. Размеры отдельных участков в пределах швов колеблются обычно в пределах 12. 14 м2. Бетон укладывают толщиной 0,10. 0,15 м на подготовку из гравия или щебня толщиной 0,10 м. Между водосливом и быстротоком, а также между быстротоком и водобойным колодцем устраивают заборные стенки. Перед водосбросом сооружают ледозащитную стенку. Водобойный колодец образуется за счет выемки и насыпи буферной дамбочки, облицованной монолитным бетоном. Вместо водобойного колодца может быть устроена водобойная стенка. Сравнительный экономический анализ показал, что водосброс из монолитного бетона в 2,3 раза дешевле сифонного водосброса.

Водоспуски. По конструкции они бывают открытыми и закрытыми. В земляных плотинах обычно устраивают закрытые трубчатые водоспуски из металлических, асбестоцементных и железобетонных труб. В конце трубчатых водоспусков предусматривают устройство для гашения энергии.

Закрытый сифонный водоспуск из металлических труб диаметром 150. 300 мм рассчитан на расход воды 0,020. 0,345 м3/с при разности бьефов 0,5. 6,0 м.

Применение этого водоспуска возможно при разности отметок наивысшей точки оси сифона и минимального уровня воды в отводящем русле не более 7 м. В работу водоспуск запускается с помощью вакуум-насоса. Гашение энергии в нижнем бьефе происходит в воронке размыва или колодезном гасителе.

Рис. 6.6. Закрытый трубчатый водоспуск с низовым затвором

Рис. 6.6. Закрытый трубчатый водоспуск с низовым затвором: 1 — канат; 2 — натяжной конец; 3 — выходной оголовок с затвором; 4 — диафрагмы; 5 — стальной трубопровод

Закрытый трубчатый водоспуск с низовым затвором (рис. 6.6) выполняется из металлических труб диаметром 150. 400 мм. Пропускная способность составляет 0,02. 0,77 м3/с при напоре 0,5. 7,0 м. Для уменьшения скорости фильтрации вдоль трубы предусмотрены диафрагмы и обсыпка водонепроницаемым грунтом. Входной и выходной оголовки расположены на основании из бетонных или деревянных свай. На входном оголовке устанавливают решетку с просветами 20 мм и ремонтный затвор; на выходном — рабочий затвор. Ремонтный затвор устанавливают не всегда. Энергия потока на выходе гасится в воронке размыва, а также гасителем свайного или колодезного типа.

Ремонт плотин. При реставрации памятников садово-паркового искусства часто приходится сталкиваться с необходимостью реставрации и реконструкции земляных плотин. Особенностью плотин прошлых веков является то, что они, как правило, не соответствуют современным нормам проектирования и строительства. Это несоответствие заключается в отклонении от современных норм таких показателей, как ширина гребня, коэффициенты заложения верхового (мокрого) и низового (сухого) откосов, отсутствии дренажных призм и других элементов дренажа, а также отсутствии противофильтрационных экранов, зуба, шпунтовых стенок, ядра и т.д. Водосбросы старых плотин были, как правило, грунтовыми и часто не закрепленными на гребне. Проектирование (если оно вообще было) и строительство таких плотин производилось без соответствующего гидрологического и геологического обоснования, что делало эти сооружения беззащитными перед лицом катастрофических половодий и паводков, приводивших к разрушению плотин в зоне фунтовых водосливов, мостовых переходов или даже всего тела плотины ***. При реставрации таких плотин часто приходится сталкиваться с зарастанием верховых откосов кустарниковой, а низовых — древесной и кустарниковой растительностью.

*** Достаточно ярким примером таких явлений явилось половодье 1908 г. в Подмосковье, когда расход воды вероятностью превышения 0,3. 0,4% достигли разрушающих размеров, в результате чего было разрушено и даже полностью смыто большое количество плотин.

Рис. 6.7. План переустройства плотин (по И. М. Шармановскому)

Рис. 6.7. План переустройства плотин (по И. М. Шармановскому): 1 — льдозащитная стенка; 2 — направляющие валики; 3 — дренаж трубчатый и труба для отвода фильтрационных вод; 4 — водобойная стенка; 5 — быстроток; 6 — подсыпка тела плотины; 7 — заделка промоин

Часто встречающимся видом повреждения является образование оврагов на месте боковых водосбросов. В таких случаях производят реконструкцию глухих земляных плотин в земляные водосливные плотины. Тогда русло образовавшегося оврага перекрывают глухой земляной плотиной, а существующую глухую плотину реконструируют в земляную водосливную плотину.

Реконструкцию можно произвести с повышением напора воды путем подсыпки двусторонних дамб и низового откоса водосливной части плотины. Если же реконструкция производится без увеличения напора воды и объема водоема, то ниже гребня плотины (на 0,8. 1,0 м) устраивают выемку для водосливной части с подсыпкой низового откоса в пределах водосливной части (рис. 6.7).

При реконструкции плотин целесообразно максимально использовать существующие материалы: булыжник, бутовый камень, бетонные и железобетонные конструкции и т.д.

Источник: Строительство и эксплуатация объектов ландшафтной архитектуры. Теодоронский В.С.

голоса
Рейтинг статьи
Ссылка на основную публикацию