Теплотехнический расчет стены кирпича
Теплотехнический расчет с примером
Давным-давно здания и сооружения строились, не задумываясь о том, какими теплопроводными качествами обладают ограждающие конструкции. Другими словами, стены делались просто толстыми. И если вам когда-нибудь случалось быть в старых купеческих домах, то вы могли заметить, что наружные стены этих домов выполнены из керамического кирпича, толщина которых составляет порядка 1,5 метров. Такая толщина кирпичной стены обеспечивала и обеспечивает до сих пор вполне комфортное пребывание людей в этих домах даже в самые лютые морозы.
В настоящее же время все изменилось. И сейчас экономически не выгодно делать стены такими толстыми. Поэтому были придуманы материалы, которые могут ее уменьшить. Одни из них: утеплители и газосиликатные блоки. Благодаря этим материалам, например, толщина кирпичной кладки может быть снижена до 250 мм.
Теперь стены и перекрытия чаще всего делают 2-х или 3-х слойными, одним слоем из которых является материал с хорошими теплоизоляционными свойствами. А для того, чтобы определить оптимальную толщину этого материала, проводится теплотехнический расчет и определяется точка росы.
Как производится расчет по определению точки росы вы можете ознакомиться на следующей странице. Здесь же будет рассмотрен теплотехнический расчет на примере.
Необходимые нормативные документы
Для расчета потребуются два СНиПа, один СП, один ГОСТ и одно пособие:
- СНиП 23-02-2003 (СП 50.13330.2012). «Тепловая защита зданий». Актуализированная редакция от 2012 года [1].
- СНиП 23-01-99* (СП 131.13330.2012). «Строительная климатология». Актуализированная редакция от 2012 года [2].
- СП 23-101-2004. «Проектирование тепловой защиты зданий» [3].
- ГОСТ 30494-96 (заменен на ГОСТ 30494-2011 с 2011 года). «Здания жилые и общественные. Параметры микроклимата в помещениях» [4].
- Пособие. Е.Г. Малявина «Теплопотери здания. Справочное пособие» [5].
Скачать СНиПы и СП вы можете здесь, ГОСТ — здесь, а Пособие — здесь.
Рассчитываемые параметры
В процессе выполнения теплотехнического расчета определяют:
- теплотехнические характеристики строительных материалов ограждающих конструкций;
- приведённое сопротивление теплопередачи;
- соответствие этого приведённого сопротивления нормативному значению.
Дальше будут приведен пример теплотехнического расчета без воздушной прослойки.
Пример. Теплотехнический расчет трехслойной стены без воздушной прослойки
Исходные данные
1. Климат местности и микроклимат помещения
Район строительства: г. Нижний Новгород.
Назначение здания: жилое .
Расчетная относительная влажность внутреннего воздуха из условия не выпадения конденсата на внутренних поверхностях наружных ограждений равна — 55% (СНиП 23-02-2003 п.4.3. табл.1 для нормального влажностного режима).
Оптимальная температура воздуха в жилой комнате в холодный период года tint= 20°С (ГОСТ 30494-96 табл.1).
Расчетная температура наружного воздуха text, определяемая по температуре наиболее холодной пятидневки обеспеченностью 0,92 = -31°С (СНиП 23-01-99 табл. 1 столбец 5);
Продолжительность отопительного периода со средней суточной температурой наружного воздуха 8°С равна zht = 215 сут (СНиП 23-01-99 табл. 1 столбец 11);
Средняя температура наружного воздуха за отопительный период tht = -4,1°С (СНиП 23-01-99 табл. 1 столбец 12).
2. Конструкция стены
Стена состоит из следующих слоев:
- Кирпич декоративный (бессер) толщиной 90 мм;
- утеплитель (минераловатная плита), на рисунке его толщина обозначена знаком «Х», так как она будет найдена в процессе расчета;
- силикатный кирпич толщиной 250 мм;
- штукатурка (сложный раствор), дополнительный слой для получения более объективной картины, так как его влияние минимально, но есть.
3. Теплофизические характеристики материалов
Значения характеристик материалов сведены в таблицу.
Примечание (*): Данные характеристики можно также найти у производителей теплоизоляционных материалов.
Расчет
4. Определение толщины утеплителя
Для расчета толщины теплоизоляционного слоя необходимо определить сопротивление теплопередачи ограждающей конструкции исходя из требований санитарных норм и энергосбережения.
4.1. Определение нормы тепловой защиты по условию энергосбережения
Определение градусо-суток отопительного периода по п.5.3 СНиП 23-02-2003:
Примечание: также градусо-сутки имеют обозначение — ГСОП.
Нормативное значение приведенного сопротивления теплопередаче следует принимать не менее нормируемых значений, определяемых по СНИП 23-02-2003 (табл.4) в зависимости от градусо-суток района строительства:
Rreq= a×Dd + b = 0,00035 × 5182 + 1,4 = 3,214м 2 × °С/Вт ,
где: Dd — градусо-сутки отопительного периода в Нижнем Новгороде,
a и b — коэффициенты, принимаемые по таблице 4 (если СНиП 23-02-2003) или по таблице 3 (если СП 50.13330.2012) для стен жилого здания (столбец 3).
4.1. Определение нормы тепловой защиты по условию санитарии
В нашем случае рассматривается в качестве примера, так как данный показатель рассчитывается для производственных зданий с избытками явной теплоты более 23 Вт/м 3 и зданий, предназначенных для сезонной эксплуатации (осенью или весной), а также зданий с расчетной температурой внутреннего воздуха 12 °С и ниже приведенное сопротивление теплопередаче ограждающих конструкций (за исключением светопрозрачных).
Определение нормативного (максимально допустимого) сопротивления теплопередаче по условию санитарии (формула 3 СНиП 23-02-2003):
где: n = 1 — коэффициент, принятый по таблице 6 [1] для наружной стены;
tint = 20°С — значение из исходных данных;
text = -31°С — значение из исходных данных;
Δtn = 4°С — нормируемый температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, принимается по таблице 5 [1] в данном случае для наружных стен жилых зданий;
αint = 8,7 Вт/(м 2 ×°С) — коэффициент теплопередачи внутренней поверхности ограждающей конструкции, принимается по таблице 7 [1] для наружных стен.
4.3. Норма тепловой защиты
Из приведенных выше вычислений за требуемое сопротивление теплопередачи выбираем Rreq из условия энергосбережения и обозначаем его теперь Rтр0= 3,214м 2 × °С/Вт .
5. Определение толщины утеплителя
Для каждого слоя заданной стены необходимо рассчитать термическое сопротивление по формуле:
где: δi- толщина слоя, мм;
λi — расчетный коэффициент теплопроводности материала слоя Вт/(м × °С).
1 слой (декоративный кирпич): R1 = 0,09/0,96 = 0,094 м 2 × °С/Вт .
3 слой (силикатный кирпич): R3 = 0,25/0,87 = 0,287 м 2 × °С/Вт .
4 слой (штукатурка): R4 = 0,02/0,87 = 0,023 м 2 × °С/Вт .
Определение минимально допустимого (требуемого) термического сопротивления теплоизоляционного материала (формула 5.6 Е.Г. Малявина «Теплопотери здания. Справочное пособие»):
где: Rint = 1/αint = 1/8,7 — сопротивление теплообмену на внутренней поверхности;
Rext = 1/αext = 1/23 — сопротивление теплообмену на наружной поверхности, αext принимается по таблице 14 [5] для наружных стен;
ΣRi = 0,094 + 0,287 + 0,023 — сумма термических сопротивлений всех слоев стены без слоя утеплителя, определенных с учетом коэффициентов теплопроводности материалов, принятых по графе А или Б (столбцы 8 и 9 таблицы Д1 СП 23-101-2004) в соответствии с влажностными условиями эксплуатации стены, м 2 ·°С/Вт
Толщина утеплителя равна (формула 5,7 [5]):
где: λут — коэффициент теплопроводности материала утеплителя, Вт/(м·°С).
Определение термического сопротивления стены из условия, что общая толщина утеплителя будет 250 мм (формула 5.8 [5]):
где: ΣRт,i — сумма термических сопротивлений всех слоев ограждения, в том числе и слоя утеплителя, принятой конструктивной толщины, м 2 ·°С/Вт.
Из полученного результата можно сделать вывод, что
R = 3,503м 2 × °С/Вт > Rтр0 = 3,214м 2 × °С/Вт → следовательно, толщина утеплителя подобрана правильно.
Влияние воздушной прослойки
В случае, когда в трехслойной кладке в качестве утеплителя применяются минеральная вата, стекловата или другой плитный утеплитель, необходимо устройство воздушной вентилируемой прослойки между наружной кладкой и утеплителем. Толщина этой прослойки должна составлять не менее 10 мм, а желательно 20-40 мм. Она необходима для того, чтобы осушать утеплитель, который намокает от конденсата.
Данная воздушная прослойка является не замкнутым пространством, поэтому в случае ее наличия в расчете необходимо учитывать требования п.9.1.2 СП 23-101-2004, а именно:
а) слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью (в нашем случае — это декоративный кирпич (бессер)), в теплотехническом расчете не учитываются;
б) на поверхности конструкции, обращенной в сторону вентилируемой наружным воздухом прослойки, следует принимать коэффициент теплоотдачи αext = 10,8 Вт/(м°С).
Примечание: влияние воздушной прослойки учитывается, например, при теплотехническом расчете пластиковых стеклопакетов.
Теплотехнический расчёт наружных стен
В процессе разработки проекта дома очень тщательное внимание нужно уделить теплотехническому расчету наружных стен, чтобы в дальнейшем при эксплуатации не расплачиваться, в прямом смысле, за экономию материалов и неверный подбор ширин и типов ограждающих конструкций.
Определимся с основными вводными:
Место строительства: Тюмень и окрестности
Назначение здания: жилое
Оптимальная температура воздуха в жилой комнате в зимний период согласно ГОСТ 30494-96 табл.1 составляет от +20 до +25 градусов, берем минимально допустимое:
Расчетная температура наружного воздуха text, определяется по таблице 1, столбец 5 СНиП 23-01-99 Строительная климатология:
Там же, в 11 столбце, нам понадобится продолжительность отопительного периода, когда среднесуточная температура ниже +8 °С:
Там же, столбец 12, средняя температура наружного воздуха за отопительный период:
Это константные величины для нашего региона. Любая переплата в надежность, или, другими словами в утепление конструкции, поможет сократить дополнительные ежегодные расходы на источнике обогрева (газ, дрова, электричество). Не стоит основываться на собственных воспоминаниях о климатических условиях, они кратковременны и неточны, а здание строится минимум на 50 лет.
Определение градусо-суток отопительного периода (ГСОП):
Нормативное значение приведенного сопротивления теплопередаче:
Требуемое сопротивление тепловой защите:
R тр = 3,542 м 2 ×°С/Вт
Это основной показатель, с которым мы будем сравнивать все тепловые сопротивления полученных стен из различных материалов для города Тюмени. Для других регионов нужно его пересчитать, основываясь на СНИП.
Кроме этих данных нам потребуются толщины слоев и их коэффициенты теплопроводности λi. Обычно эти данные открыто публикуются производителями материалов, либо их усредненные показатели можно взять в приложении 3, СНиП II-3-79* Строительная теплотехника.
В нашем примере в качестве утеплителя рассчитаем газоблок «Поревит» толщиной 200 мм, проверим достаточно ли его для утепления.
Название материала | Ширина, м | λ1, Вт/(м × °С) | R1, м 2 ×°С/Вт |
---|---|---|---|
Кирпич фасадный (бессер) | 0,08 | 0,96 | 0,08 / 0,96 = 0,083 |
Воздух | 0,02 | — | — |
Поревит БП-200 (D500) | 0,2 | 0,12 | 0,2 / 0,12 = 1,666 |
Кирпич несущий | 0,12 | 0,87 | 0,12 / 0,87 = 0,138 |
Штукатурка | 0,02 | 0,87 | 0,02 / 0,87 = 0,023 |
Сумма термических сопротивлений всех слоев стены без учета слоя утеплителя
Требуемое сопротивление утеплителя
Rут = R тр — (0,115 + 0,044 + ΣRi) = 3,542 — (0,159 + 0,244) = 3,139 м 2 ×°С/Вт
0,115 = Rint = 1/αint = 1/8,7 — сопротивление теплообмену на внутренней поверхности стен
0,044 = Rext = 1/αext = 1/23 — сопротивление теплообмену на наружной поверхности
Требуемая толщина утеплителя δут
В случае, когда в трехслойной кладке в качестве утеплителя применяются минеральная вата, стекловата или другой плитный утеплитель, необходимо устройство воздушной вентилируемой прослойки между наружной кладкой и утеплителем. Толщина этой прослойки должна составлять не менее 10 мм, а желательно 20—40 мм. Она необходима для того, чтобы осушать утеплитель, который намокает от конденсата.
Данная воздушная прослойка является не замкнутым пространством, поэтому в случае ее наличия в расчете необходимо учитывать требования п.9.1.2 СП 23-101-2004, а именно:
а) слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью (в нашем случае — это декоративный кирпич (бессер)), в теплотехническом расчете не учитываются;
б) на поверхности конструкции, обращенной в сторону вентилируемой наружным воздухом прослойки, следует принимать коэффициент теплоотдачи αext = 10,8 Вт/(м°С).
Мы получили толщину утеплителя 380 миллиметров, значит блока «Поревит» с толщиной 200 в кладке недостаточно. Блока шириной 380 мм нет в сортаменте, а потому следует использовать близкий по значению 400 мм.
Определим общее термическое сопротивление стены теперь уже с учетом утеплителя:
R = 0,115 + 0,044 + 0,244 + 0,4/0,12 = 3,736 м 2 ×°С/Вт
Если общее термическое сопротивление больше требуемого, значит расчет выполнен верно:
Лирическое отступление
Некоторые могут возразить, мол, строят стены из чистого «Поревита» толщиной 300 мм и в домах тепло — это верно.
, не всегда уличная температура держится в своих минимальных значениях и 7–10 морозных дней можно потерпеть в прохладном здании, а , можно добиться комфортной температуры в помещении увеличив расход тепловой энергии (газ, дрова, электричество).
Полученный показатель дает лишь рекомендованную толщину стен, при соблюдении которой, получите температуру в в помещениях, при соблюдении технологий возведения прочих ограждающих конструкций: пол, потолок, окна, двери.
Типовые конструкции стен
Разберем варианты из различных материалов и различных вариаций «пирога», но для начала, стоит упомянуть самый дорогой и сегодня крайне редко встречаемый вариант — стена из цельного кирпича. Для Тюмени толщина стены должна быть 770 мм или три кирпича.
В противовес, достаточно популярный вариант — брус 200 мм. Из схемы и из таблицы ниже становится очевидно, что одного бруса для жилого дома недостаточно. Остается открытым вопрос, достаточно ли утеплить наружные стены одним листом минеральной ваты толщиной 50 мм?
Название материала | Ширина, м | λ1, Вт/(м × °С) | R1, м 2 ×°С/Вт |
---|---|---|---|
Вагонка из хвойных пород | 0,01 | 0,15 | 0,01 / 0,15 = 0,066 |
Воздух | 0,02 | — | — |
Эковер Стандарт 50 | 0,05 | 0,04 | 0,05 / 0,04 = 1,25 |
Брус сосновый | 0,2 | 0,15 | 0,2 / 0,15 = 1,333 |
Подставляя в предыдущие формулы, получаем требуемую толщину утеплителя δут = 0,08 м = 80 мм.
Отсюда следует что утепления в один слой 50 мм минеральной ваты недостаточно, нужно утеплять в два слоя с перехлестом.
Любителям рубленных, цилиндрованных, клееных и прочих видов деревянных домов. Можете подставить в расчет любую, доступную вам, толщину деревянных стен и убедиться, что без внешнего утепления в холодные периоды вы: либо будете мерзнуть при равных расходах тепловой энергии, либо тратить больше на отопление. К сожалению, чудес не бывает.
Так же стоит отметить несовершенство стыков между бревнами, что неизбежно ведет к теплопотерям. На снимке тепловизора угол дома снятый изнутри.
Керамзитоблок
Следующий вариант так же набрал популярность в последнее время, керамзитоблок 400 мм с облицовкой кирпичом. Выясним какой толщины утеплитель нужен в этом варианте.
Название материала | Ширина, м | ||
---|---|---|---|
Кирпич | 0,12 | 0,87 | 0,12 / 0,87 = 0,138 |
Воздух | 0,02 | — | — |
Эковер Стандарт 50 | 0,05 | 0,04 | 0,05 / 0,04 = 1,25 |
Керамзитоблок | 0,4 | 0,45 | 0,4 / 0,45 = 0,889 |
Подставляя в предыдущие формулы, получаем требуемую толщину утеплителя δут = 0,094 м = 94 мм.
Для кладки из керамзитоблока с облицовкой кирпичом требуется минеральный утеплитель толщиной 100 мм.
Газоблок
Газоблок 400 мм с нанесением утеплителя и оштукатуриванием по технологии «мокрый фасад». Величину внешней штукатурки в расчет не включаем из-за крайней малости слоя. Так же, в силу правильной геометрии блоков сократим слой внутренней штукатурки до 1 см.
Название материала | Ширина, м | ||
---|---|---|---|
Эковер Стандарт 50 | 0,05 | 0,04 | 0,05 / 0,04 = 1,25 |
Поревит БП-400 (D500) | 0,4 | 0,12 | 0,4 / 0,12 = 3,3 |
Штукатурка | 0,01 | 0,87 | 0,01 / 0,87 = 0,012 |
Подставляя в предыдущие формулы, получаем требуемую толщину утеплителя δут = 0,003 м = 3 мм.
Здесь напрашивается вывод: блок Поревит толщиной 400 мм не требует утеплителя с внешней стороны, достаточно внешней и внутренней штукатурки или отделки фасадными панелями.
Важное замечание!
Несмотря на то, что мы получили для газобетона минимальную толщину утеплителя, это вовсе не значит что он не нужен — обязательно нужен.
Если объяснить это коротко, то коэффициенты теплороводности λ всех материалов указываются для идеальных условий: постоянная температура и влажность. В жизни же газобетон увлажняется из-за разности температур внутри и снаружи дома, при этом значительно теряет свои характеристики теплопроводности.
Заключение
Таинство теплотехнического расчета открывает не только возможность в подборе стеновых ограждений: пирог утепленной кровли, полы первого этажа и чердачные перекрытия, всё считается с применением этих формул. Для пола нужно учитывать, что температура в пространстве между землей и полом не опускается ниже +5 градусов, поэтому требуемое сопротивление тепловой защите R тр придется подобрать по-новой.
Станет ли дом тёплым и экономичным зависит только от вас, а в следующей статье мы разберём вопросы: конденсата, точки росы, правильного утепления газобетона и почему в качестве утеплителя стен не стоит использовать пенопласт и пенополистирол.
Теплотехнический расчет стен из различных материалов
Среди многообразия материалов для строительства несущих стен порой стоит тяжелый выбор. Сравнивая между собой различные варианты, одним из немаловажных критериев на который нужно обратить внимание является “теплота” материала. Способность материала не выпускать тепло наружу повлияет на комфорт в помещениях дома и на затраты на отопление. Второе становится особенно актуальным при отсутствии подведенного к дому газа.
Теплозащитные свойства строительных конструкций характеризует такой параметр, как сопротивление теплопередаче (Ro, м²·°C/Вт).
По существующим нормам (СП 50.13330.2012 Тепловая защита зданий. Актуализированная редакция СНиП 23-02-2003), при строительстве в Самарской области, нормируемое значение сопротивления теплопередачи для наружных стен составляет Ro.норм = 3,19 м²·°C/Вт. Однако, при условии, что проектный удельный расход тепловой энергии на отопление здания ниже нормативного , допускается снижение величины сопротивления теплопередачи, но не менее допустимого значения Ro.тр =0,63·Ro.норм = 2,01 м²·°C/Вт.
В зависимости от используемого материала, для достижения нормативных значений, необходимо выбирать определенную толщину однослойной или конструкцию многослойной стены. Ниже представлены расчеты сопротивления теплопередаче наиболее популярных вариантов конструкций наружных стен.
Расчет необходимой толщины однослойной стены
В таблице ниже определена толщина однослойной наружной стены дома, удовлетворяющая требованиям норм по теплозащите.Требуемая толщина стены определена при значении сопротивления теплопередачи равном базовому (3,19 м²·°C/Вт). Допустимая – минимально допустимая толщина стены, при значении сопротивления теплопередачи равном допустимому (2,01 м²·°C/Вт).
№ п/п | Материал стены | Теплопроводность, Вт/м·°C | Толщина стены, мм | |
Требуемая | Допустимая | |||
1 | Газобетонный блок | 0,14 | 444 | 270 |
2 | Керамзитобетонный блок | 0,55 | 1745 | 1062 |
3 | Керамический блок | 0,16 | 508 | 309 |
4 | Керамический блок (тёплый) | 0,12 | 381 | 232 |
5 | Кирпич (силикатный) | 0,70 | 2221 | 1352 |
Вывод: из наиболее популярных строительных материалов, однородная конструкция стены возможна только из газобетонных и керамических блоков. Стена толщиной более метра, из керамзитобетона или кирпча, не представляется реальной.
Расчет сопротивления теплопередачи стены
Ниже представлены значения сопротивления теплопередаче наиболее популярных вариантов конструкций наружных стен из газобетона, керамзитобетона, керамических блоков, кирпича, с отделкой штукатуркой и облицовочным кирпичом, утеплением и без. По цветной полосе можно сравнить между собой эти варианты. Полоса зеленого цвета означает, что стена соответствует нормативным требованиям по теплозащите, желтого – стена соответствует допустимым требованиям, красного – стена не соответствует требованиям
Теплотехнический калькулятор
тип расчёта
конструкция
климат
помещение
структура
результат
Что нужно вычислить?
Шаг №2 — Вид конструкции
Для какой части здания производится расчёт?
Покрытие
Стена
Перекрытие
Шаг №1 — Тип расчёта Шаг №3 — Климат
Где находится здание?
Шаг №2 — Тип конструкции Шаг №4 — Тип помещения
Каково функциональное назначение здания и помещения?
Шаг №3 — Климат Шаг №5 — Структура
Структура теплоизолирующей конструкции
Недавно вы изменили тип конструкции. Хотите ли вы загрузить типовой пример для него?
Чтобы поменять местами слои, просто потяните слой вверх или вниз.
Чтобы редактировать слой, нажмите на кнопку с изображением карандаша.
Шаг №4 — Тип помещения Шаг №6 — Результаты расчёта
Результаты расчёта
Вернуться к началу
Расчёт термических сопротивлений
Расчёт ориентировочного термического сопротивления утеплителя
Расчёт ориентировочной толщины слоя утеплителя из условия:
Расчётный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции:
Температуру внутренней поверхности — Tв, °С, ограждающей конструкции (без теплопроводного включения), следует определять по формуле:
Температуру tx, °С, ограждающей конструкции в плоскости, соответствующей границе слоя x, следует определять по формуле:
Москва Преображенская площадь д.8
+7 (495) 228-81-10
Санкт-Петербург 10-я Красноармейская улица, дом 22, литер А, 3-й этаж, Бизнес-центр «Келлерманн-центр»
+7 (812) 384-17-18
Нижний Новгород ул. М.Горького, д.195, 9 этаж
+7(831) 202-02-81
Ростов-на-Дону бульвар Комарова, д.28е, офис 302
+7 (918) 509 77 70
Екатеринбург ул. Сибирский тракт, 12, строение №2 , офис 301/1. БЦ «Квартал»
+7 (343) 344-37-33
Новосибирск ул.Нарымская, д.27, 12 этаж
+7 (913) 480-94-50