Don-stroitel.ru

Все о ремонте
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сопротивление теплопередаче стены кирпич

Рассчет теплопроводности стен: таблица теплосопротивления материалов

Во многих случаях при выборе материала для строительства дома мы не вникаем, каково теплосопротивление строительных материалов, а полагаемся на «народные» методики. Самые популярные из них: «как у соседа», «как раньше», «смотри, какой толстый слой», и – венец искусства – «вроде, должно быть нормально». Что ж, ваш дом – вам и решать, какому методу отдать предпочтение. Но чтобы точно ответить на вопрос, достаточно ли тепло будет в вашем доме зимой (и достаточно ли прохладно в летний зной), нужно знать теплосопротивление стены. Откуда его можно узнать, как считать теплопроводность стены и как это поможет при ответе на ваш вопрос? Давайте разберемся по порядку.

Итак, немного теории, чтобы определиться с терминами и понять, как рассчитать теплосопротивление стены.

Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Такой вид теплопередачи, обусловленный тепловыми движениями и столкновениями молекул, называется теплопроводностью.
Итак, теплопроводность – это количественная оценка способности конкретного вещества проводить тепло.
Теплосопротивление – величина обратная теплопроводности. (Хорошо проводит тепло – значит, слабо теплу сопротивляется. Следовательно, обладает высокой теплопроводностью и низким теплосопротивлением).
То есть, при строительстве лучше использовать материалы с низкой теплопроводностью (высоким теплосопротивлением) для лучшего сохранения тепла.

Как рассчитать теплопроводность стены?

Чтобы рассчитать теплосопротивление слоя нужно его толщину в метрах разделить на коэффициент теплосопротивления материалов, из которых он выполнен.
Как рассчитать коэффициент теплопроводности? Эти расчеты делаются в лабораторных условиях. Тем не менее, узнать его несложно: нормальный производитель всегда предоставляет эти данные, указан он и в СНиПе в разделе «Строительная теплотехника», правда, там представлены не все современные материалы. Если вы хотите знать теплосопротивление материалов, таблица с некоторыми из них представлена на данной странице.

Как пользоваться коэффициентом теплопроводности? В СНИПе указано два режима эксплуатации А и Б. Режим А подходит для сухих помещений (влажность меньше 50%) и для районов, удаленных от морских берегов. Для московского региона, например, подходит режим А. Таким образом, теплосопротивление стен по регионам может отличаться.

Теплосопротивление слоя =толщина слоя (м)
Коэффициент теплопроводности материала ( )

Теплосопротивление многослойной конструкции считается как сумма теплосопротивлений каждого слоя. (В случае с одним слоем все просто – его теплосопротивление и будет теплосопротивлением всей конструкции.)

Теплосопротивление конструкции = теплососпротивление слоя 1 + теплосоротивление слоя 2 + и т.д.

Единицы измерения теплосопротивления —

Рассмотрим, как рассчитать толщину стены по теплопроводности на конкретных примерах.

Пример 1

Стена толщиной в полтора кирпича, или, если перевести в международную систему измерения, 0,37 метра (37 сантиметров). Как посчитать теплопроводность стены?

Все, кто имел опыт работы с кирпичом, знают, что кирпич может быть разным. И коэффициент теплопроводности кирпичной кладки, соответственно, тоже разный. Кроме того, теплопроводность кирпичной стены на обычном цементно-песчаном растворе будет ниже, чем коэффициент отдельного кирпича. Как посчитать коэффициент теплопроводности стены в таком случае? Для расчетов будет правильно использовать именно значение для кладки.

Вид кирпичаКоэффициент
теплопро-
водности*,
Кирпичная кладка
на цементно-песчаном
растворе, плотность
1800 кг/м³*
Теплосопроти-
вление стены толщи-
ной 0,37 м,
Красный глиняный (плотность 1800 кг/м³)0,560,700,53
Силикатный, белый0,700,850,44
Керамический пустотелый (плотность 1400 кг/м³)0,410,490,76
Керамический пустотелый (плотность 1000 кг/м³)0,310,351,06

(*из межгосударственного стандарта ГОСТ 530-2007)

Итак, мы убедились, что не все кирпичи одинаковы. И теплопроводность кирпичной кладки в зависимости от вида кирпича может отличаться в 2 раза. Ваш дом из какого кирпича? А мы рассмотрим самый лучший результат (плотность кирпичной кладки полтора керамических пустотелых кирпича). В данном случае теплосопротивление кирпича 1,06 . Запомним результат и перейдем к следующему примеру.

Пример 2

Допустим, мы хотим построить дачный домик из бруса сечением 15 см. Снаружи и изнутри отделаем вагонкой. Что получим? Коэффициент теплосопротивления дерева поперек волокон (данные из СНиПов) составляет 0,14 . Теперь делаем расчет теплосопротивления стены: толщину материала разделим на коэффициент теплопроводности.

Для бруса (это 0,15 м дерева) теплосопротивление составит (0,15/0,14) 1,07 .

Для вагонки (толщина 20 мм или 0,02 м) – 0,143 . Да, вагонка с двух сторон, значит 0.143 х 2 = 0,286 . Справедливости ради заметим, что на практике теплосопротивлением вагонки чаще всего пренебрегают, так как на стыках она имеет еще меньшую толщину, следовательно, меньшее теплосопротивление материала.

Запомним общее расчетное теплосопротивление стены из 15-исантиметрового бруса, обшитого изнутри и снаружи вагонкой, –
1,356 .

Чтобы не было необходимости делать расчёт теплосопротивления стены для каждого материала, в приведенной здесь таблице мы собрали данные по теплосопротивлению материалов, часто используемых при строительстве домов.

Таблица теплосопротивления материалов

МатериалТолщина
материала (мм)
Расчетное теплосо-
противлениеа (м² * °С / Вт)
Брус1000,71
Брус1501,07
Кладка из красного кирпича
(плотность 1800 кг/м³)
380
(полтора кирпича)
0,53
Кладка из белого силикатного кирпича380
(полтора кирпича)
0,44
Кладка из керамического пустотелого кирпича (плотность 1400 кг/м³)380
(полтора кирпича)
0,76
Кладка из керамического пустотелого кирпича (плотность 1000 кг/м³)380
(полтора кирпича)
1,06
Кладка из красного кирпича
(плотность 1800 кг/м³)
510
(два кирпича)
0,72
Кладка из белого силикатного кирпича510
(два кирпича)
0,6
Кладка из керамического пустотелого кирпича (плотность 1400 кг/м³)510
(два кирпича)
1,04
Кладка из керамического пустотелого кирпича (плотность 1000 кг/м³)510
(два кирпича)
1,46
Кладка на клей из газо- пенобетонных блоков (плотность 400 кг/м³)2001,11
Кладка на клей из газо- пенобетонных блоков (плотность 600 кг/м³)2000,69
Кладка на клей керамзитобетонных блоков на керамзитовом песке и керамзитобетоне (плотность 800 кг/м³)2000,65
Теплоизоляционные материалы
Плиты из каменной ваты ROCKWOOL ФАСАД БАТТС501,25
Ветрозащитные плиты Изоплат250,45
Теплозащитные плиты Изоплат120,27

Снова обратимся к СНиПам: теплосопротивление наружной стены, например, в Московской области должно быть не меньше 3 . Помните цифры, которые мы получили? В Российской Федерации нет районов, для которых эта величина составляла хотя бы 1,5 (не говоря уже о значениях еще ниже). Для сравнения приведем такие данные: в Германии эта норма определена не менее 3,4 , в Финляндии — не менее 5 (это, разумеется, уже не по нашим СНиПам, а по их регламентирующим документам).

Эти требования — для домов постоянного проживания. Если дом (как написано в СНиПах) предназначен для сезонного проживания, либо отапливается менее 5 дней в неделю, эти требования на него не распространяются.
Итак мы можем сделать вывод, что в домах со стенами в 1,5 кирпича, либо из бруса в 15 см проживать постоянно… нежелательно. Но ведь живем же! Да, только цена отопления 1 м³ из года в год становится все выше. Со временем все домовладельцы перейдут к эффективному утеплению домов — экономические соображения заставят заранее рассчитать теплопроводность стены и выбрать наилучшее техническое решение.

Теплотехнический расчёт стены

Назначение здания — административное.
Расчетная температурой наружного воздуха в холодный период года, text = -40 °С;
Расчетная средняя температура внутреннего воздуха здания, tint = +20 °С;
Средняя температура наружного воздуха отопительного периода, tht = -8 °С;
Продолжительность отопительного периода, zht = 241 сут.;
Нормальный влажностный режим помещения и условия эксплуатации ограждающих конструкций — А (сухой режим помещения в нормальной зоне влажности).
Коэффициент, учитывающий зависимость положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху, n = 1;
Коэффициент теплоотдачи наружной поверхности ограждающей конструкции, αext = 23 Вт/(м²•°С);
Коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, αint = 8.7 Вт/(м²•°С);
Состав наружной стены:

№ слояСлойδ, ммλ, Вт/(м °С)γ, кг/м 3
1Кладка из кирпича керамического пустотного1200.641300
2Минераловатный утеплитель1500.03960
3Кладка из кирпича керамического полнотелого3800.811600
4Штукатурка ц.п.200.911800
Определение требуемого сопротивления теплопередаче

Определим величину градусо-суток Dd в течение отопительного периода по формуле 1 [СП 23-101-2004]:

где tint — расчетная средняя температура внутреннего воздуха здания [табл.1, СП 23-101-2004];
tht — средняя температура наружного воздуха отопительного периода [табл.1, СП 23-101-2004];
zht — продолжительность отопительного периода [табл.1, СП 23-101-2004].

Определим требуемое значение сопротивления теплопередачи Rreq по табл. 3 [СП 50.13330.2012]

где Dd — градусо-сутки отопительного периода;
а=0,0003 [табл.3, СП 50.13330.2012]
b=1,2 [табл.3, СП 50.13330.2012]

Rreq = 0.0003*6748+1.2=3.2244 м 2 *°С/Вт,

Определение приведённого сопротивления теплопередаче стены

teplo_s_f01.png

где αв — коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м 2 *°С), принимаемый по табл. 4 СП 50.13330.2012;
αн — коэффициент теплоотдачи наружной поверхности ограждающей конструкций для условий холодного периода, Вт/(м 2 *°С), принимаемый по таблице 6 СП 50.13330.2012;

Rs — термическое сопротивление слоя однородной части фрагмента (м 2 *°С)/Вт, определяемое по формуле:

teplo_s_f02.png

δs — толщина слоя, м;
λs — расчетный коэффициент теплопроводности материала слоя, Вт/(м*°С), принимаемый согласно приложения Т СП 50.13330.2012.
ys уэ — коэффициент условий эксплуатации материала слоя, доли ед. При отсутствии данных принимается равным 1.

Расчетное значение сопротивления теплопередаче, R:

teplo_s_f03.png

R > Rreq — Условие выполняется

Толщина конструкции, ∑t =675 мм;

Определение температурного перепада между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции

Значение выразим из формулы (5.4) СП 50.13330.2012

teplo_s_f04.png

teplo_s_f05.png

Δt н > Δt, 4.5 °C > 1.469 °C — условие выполняется.

Моделирование однородной стены в ЛИРА САПР. Решение стационарной задачи

Схема ограждающей конструкции:

teplo_s_01.png

Создаём задачу в 15-м признаке схемы. Рассмотрим участок стены, длиной 1 м

Шаг 1 геометрия

teplo_s_02.png

teplo_s_03.png

Шаг 2 Создание элементов конвекции

Моделируем стержни по наружной и внутренней граням стены. Стержням следует присвоить тип КЭ №1555. Они являются своего рода граничными условиями и, в то же время, воспринимают температуру воздуха.

teplo_s_04.png

Шаг 3 характеристики материалов

В окне задания типов жёсткости следует создать жёсткость: пластины Теплопроводность (пластины). В окне характеристик жёсткости вводятся параметры Н — толщина пластины, К — коэффициент теплопроводноти, С — коэффициент теплопоглощения, R0 — удельный вес.

Характеристики слоёв стены:
Кирпич облицовочный пустотелый Н=100 см, К=0.64 Дж/(м*с*°С);
Теплоизоляция Н=100 см, К=0.039 Дж/(м*с*°С);
Кирпич полнотелый Н=100 см, К=0.81 Дж/(м*с*°С);
Штукатурка ц.п. Н=100 см, К=0.76 Дж/(м*с*°С);

Для элементов конвекции, следует создать типы жёсткости Конвекция (двухузловые). Для таких элементов задаются коэффициенты конвекции внутреннего и внешнего слоя.

teplo_s_05.png

Шаг 4 Внешняя нагрузка

Через внешнюю нагрузку задаётся температура воздуха для элементов конвекции. Для этого, в разделе нагрузки, нужно открыть Заданная t.

teplo_s_06.png

teplo_s_07.png

teplo_s_08.png

Температура на внутренней поверхности ограждающей конструкции составляет 18.531 °С (результат замера температуры в узле).

Определение сопротивления теплопередачи конструкции по результатам расчёта ЛИРА САПР

Сопротивление теплопередачи определяется по формуле (5.4) СП 50.13330.2012:

teplo_s_f06.png

Теплотехнический расчёт наружной стены здания с учётом неоднородности

Исходные данные

Для расчёта принимается конструкция стены, рассмотренная в предыдущем примере. Неоднородностью будет выступать кладочная сетка, служащая для крепления облицовки к несущему слою кладки. Параметры сетки: d=3 мм, шаг стержней 50х50 мм.

teplo_s_09.png

Определение приведённого сопротивления теплопередаче с учётом неоднородностей

Приведённое сопротивление теплопередаче фрагмента теплозащитной оболочки здания R пр , (м 2 *°C)/Вт, следует определять по формуле:

teplo_s_f07.png

где R усл — осреднённое по площади условное сопротивление теплопередаче фрагмента теплозащитной оболочки здания либо выделенной ограждающей конструкции, (м 2 *°C)/Вт;
lj — протяжённость линейной неоднородности j-го вида, приходящаяся на 1 м 2 фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, м/м 2 ;
ΨI — удельные потери теплоты через линейную неоднородность j-го вида, Вт/(м*°С);
nk — количество точечных неоднородностей k-го вида, приходящихся на 1 м 2 фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, шт./м 2 ;
χk — удельные потери теплоты через точечную неоднородность k-го вида, Вт/°С;
ai — площадь плоского элемента конструкции i-го вида, приходящаяся на 1 м 2 фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, м 2 /м 2 ;

teplo_s_f08.png

где Ai — площадь i-й части фрагмента, м 2 ;
Ui — коэффициент теплопередачи i-й части фрагмента теплозащитной оболочки здания (удельные потери теплоты через плоский элемент i-го вида), Вт/(м 2 *°С);

teplo_s_f09.png

Определение удельных потерь теплоты кладочной сетки

Кладочная сетка, через которую осуществляется связь между облицовкой и несущим слоем, является линейной неоднородностью. Удельные потери теплоты через линейную неоднородность, определяются по СП 230.1325800.2015, приложение Г.7 Теплозащитные элементы, образуемые различными видами связей в трёхслойных железобетонных панелях.

Удельное сечение металла на 1 м.п. в рассматриваемом примере составит S*(1000/50)=3.14159*d 2 /4*(1000/50)=1.41372 см 2 /м

Удельные потери теплоты будут определяться по интерполяции между значениями, найденными по таблицам Г.42 и Г.43 СП 230.1325800.2015

Таблица Г.42 — Удельные потери теплоты Ψ, Вт/(м*°С). Сетка с удельным сечением металла на 1 п.м 0,53 см 2 /м

dут, ммλ = 0,2λ = 0,6λ = 1,8
500,0050,0080,011
800,0050,0070,009
1000,0040,0070,008
1500,0040,0050,006

Таблица Г.43 — Удельные потери теплоты Ψ, Вт/(м*°С). Сетка с удельным сечением металла на 1 п.м 2,1 см 2 /м

dут, ммλ = 0,2λ = 0,6λ = 1,8
500,0180,0310,043
800,0180,0280,035
1000,0170,0260,031
1500,0150,0210,024

Обозначения в таблицах:
— толщина слоя утеплителя dут, мм;
— теплопроводность основания λ, Вт/(м*°С), для кирпичной кладки из полнотелого керамического кирпича принимается λ = 0.56;
— удельное сечение металла на 1 м.п. сетки, см 2 /м.

Потери теплоты по таблице Г.42:

teplo_s_12.png

Потери теплоты по таблице Г.43:

teplo_s_13.png

Итоговое значение потерь теплоты:

teplo_s_14.png

Суммарная протяжённость линейных неоднородностей Σlj = 2 м.

Подставив полученные значения в формулу (Е.1), получим:

teplo_s_f10.png

Моделирование неоднородной стены в ЛИРА САПР. Решение стационарной задачи

Для построения модели неоднородной стены, принимается модель, созданная на предыдущем этапе. Теплопроводные включения моделируются как стержневые элементы теплопроводности, которые пересекают три слоя стены: кладка, теплоизоляция, облицовка. Стержни расположены с шагом 40 см по высоте. Теплопроводность арматурной стали 58 м 2 *°С/Вт.

teplo_s_15.png

teplo_s_16.png

teplo_s_17.png

Температура на внутренней поверхности ограждающей конструкции составляет 18.087 °С. (среднее значение температуры на внутренней поверхности стены).

Определение сопротивления теплопередачи конструкции по результатам расчёта ЛИРА САПР

Сопротивление теплопередачи определяется по формуле (5.4) СП 50.13330.2012:

Сопротивление теплопередаче стены кирпич

ГОСТ Р 54851-2011

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

КОНСТРУКЦИИ СТРОИТЕЛЬНЫЕ ОГРАЖДАЮЩИЕ НЕОДНОРОДНЫЕ

Расчет приведенного сопротивления теплопередаче

Dissimilar building envelopes. Calculation of reduced total thermal resistance

Дата введения 2012-05-01

Сведения о стандарте

1 РАЗРАБОТАН Учреждением "Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук"

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

4 Настоящий стандарт разработан с учетом основных нормативных положений международного стандарта ИСО 14683:2007* "Тепловые мостики при строительстве зданий — Линейная теплопередача — Упрощенные методы и стандартные значения" (ISO 14683:2007 "Thermal bridges in building construction — Linear thermal transmittance — Simplified methods and default values, NEQ")

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. — Примечание изготовителя базы данных.

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок — в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

Настоящий стандарт устанавливает методы определения теплозащитных характеристик ограждающих конструкций зданий и сооружений в соответствии с требованиями Федерального закона N 384-ФЗ от 30 декабря 2009 г. "Технический регламент о безопасности зданий и сооружений", согласно которому здания и сооружения, с одной стороны, должны исключать в процессе эксплуатации нерациональный расход энергетических ресурсов, а с другой — не создавать условия для недопустимого ухудшения параметров среды обитания людей и условий осуществления различных технологических процессов.

Настоящий стандарт разработан с целью подтверждения соответствия теплотехнических характеристик наружных ограждений зданий и сооружений нормативным значениям и требованиям контроля этих показателей согласно [1] с учетом требований ГОСТ Р 51380 и ГОСТ Р 51387. Настоящий стандарт позволяет оценить уровень теплозащиты ограждающих конструкций при приемке зданий и последующей эксплуатации, наметить мероприятия по повышению уровня теплозащиты зданий в случае отклонения энергопотребления от действующих нормативных требований.

В рамках реализации Федерального закона N 261-ФЗ от 23 ноября 2009 г. "Об энергосбережении и повышении энергетической эффективности" настоящий стандарт является одним из базовых стандартов, обеспечивающих теплотехническими параметрами энергетический паспорт и энергоаудит эксплуатируемых зданий.

1 Область применения

Настоящий стандарт устанавливает методы расчета приведенного сопротивления теплопередаче неоднородных ограждающих конструкций помещений жилых, общественных, административных, бытовых, сельскохозяйственных, производственных зданий и сооружений, а также совокупности ограждающих конструкций, отделяющих внутренний объем здания от наружной среды.

В зависимости от типа ограждающей конструкции и теплотехнических неоднородностей, входящих в структуру ограждения, настоящий стандарт предлагает методы теплотехнического расчета обобщенной теплозащитной характеристики теплотехнически неоднородного ограждения, разделяющего пространства с различными температурно-влажностными средами (в пределах одного помещения, группы соседних помещений, этажа, всего фасада здания, ограждений, контактирующих снаружи с грунтом, и т.д.). Настоящий стандарт также учитывает в теплотехнических расчетах наружных ограждений такие виды теплотехнических неоднородностей, как примыкания элементов ограждения здания (наружные и внутренние углы, примыкания стен к покрытиям и перекрытиям первого этажа над холодным подвалом или уложенным по грунту, примыкание наружных ограждений к внутренним), и отдельных элементов наружных ограждений (стыки между соседними панелями, откосы проемов, связи между облицовочными слоями ограждений).

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ Р 51263-99 Полистиролбетон. Технические условия

ГОСТ Р 51380-99 Энергосбережение. Методы подтверждения соответствия показателей энергетической эффективности энергопотребляющей продукции их нормативным значениям

ГОСТ Р 51387-99 Энергосбережение. Нормативно-методическое обеспечение. Основные положения

ГОСТ 11024-84 Панели стеновые наружные бетонные и железобетонные для жилых и общественных зданий. Общие технические условия

ГОСТ 11118-2009 Панели из автоклавных ячеистых бетонов для наружных стен зданий. Технические условия

ГОСТ 13578-68 Панели из легких бетонов на пористых заполнителях для наружных стен производственных зданий. Технические требования

ГОСТ 19010-82 Блоки стеновые бетонные и железобетонные для зданий. Общие технические условия

ГОСТ 21562-76 Панели металлические с утеплителем из пенопласта. Общие технические условия

ГОСТ 23486-79 Панели металлические трехслойные стеновые с утеплителем из пенополиуретана. Технические условия

ГОСТ 24594-81 Панели и блоки стеновые из кирпича и керамических камней. Общие технические условия

ГОСТ 25485-89 Бетоны ячеистые. Технические условия

ГОСТ 25820-2000 Бетоны легкие. Технические условия

ГОСТ 26254-84 Здания и сооружения. Методы определения сопротивления теплопередаче ограждающих конструкций

ГОСТ 26602.1-99 Блоки оконные и дверные. Методы определения сопротивления теплопередаче

ГОСТ 30494-96 Здания жилые и общественные. Параметры микроклимата в помещениях

ГОСТ 31310-2005 Панели стеновые трехслойные железобетонные с эффективным утеплителем. Общие технические условия

ГОСТ 31359-2007 Бетоны ячеистые автоклавного твердения. Технические условия

ГОСТ 31360-2007 Изделия стеновые неармированные из ячеистого бетона автоклавного твердения. Технические условия

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применяют следующие термины с соответствующими определениями:

3.1 теплопередача: Перенос теплоты от одной окружающей среды через ограждающую конструкцию к другой окружающей среде.

3.2 наружная ограждающая конструкция здания: Конструктивный элемент здания, защищающий внутреннее пространство, в котором поддерживаются требуемые параметры микроклимата, от воздействий наружной среды.

3.3 линейная теплотехническая неоднородность: Линейная зона примыкания двух ограждающих конструкций, влияющего на изменение теплового потока, проходящего через наружное ограждение (стык между соседними панелями, угол, образованный из двух наружных ограждений или наружного ограждения с внутренним, откос проема, соединительное ребро внутри ограждения и др.).

3.4 точечная теплотехническая неоднородность: Локальный соединительный элемент многослойного наружного ограждения, обеспечивающий его конструктивную целостность и повышающий теплопотери в зоне его прохождения (гибкие связи, дюбели, шпонки и другие точечные соединения, проходящие через теплоизоляционные слои ограждения),

3.5 условное сопротивление теплопередаче ограждающей конструкции , м·°С/Вт: Величина, характеризующая уровень сопротивления прохождению теплоты через однородную часть наружного ограждения при разности температур воздушных сред, расположенных по обе его стороны.

3.6 приведенное сопротивление теплопередаче ограждения , м·°С/Вт: Средневзвешенное по площади сопротивление теплопередаче совокупности видов ограждающих фрагментов и их элементов, образующих теплотехнически неоднородную конструкцию (панель, окно, витраж, светпропускающий фонарь, наружную дверь, ворота), часть здания (стену, фасад, покрытие, перекрытие над холодным подвалом или подпольем, ограждение, контактирующее с грунтом, ограждение, разделяющее помещения с различными температурами внутреннего воздуха) или наружное ограждение здания в целом.

3.7 коэффициент теплотехнической однородности : Безразмерный показатель, оценивающий снижение уровня теплозащиты ограждения вследствие наличия в нем различного вида теплотехнических неоднородностей (соединительных элементов облицовок ограждения, пронзающих теплоизоляционные слои, стыков между элементами ограждающих конструкций с примыканием к ним внутренних ограждений, откосов, угловых соединений, в том числе примыканий стен к покрытиям, перекрытиям над холодными пространствами, мест закрепления в стенах балконных плит и т.п.) и численно выражаемый отношением приведенного сопротивления теплопередаче ограждения к сопротивлению теплопередаче его зоны, удаленной от теплопроводных включений.

4 Методы расчета приведенного сопротивления теплопередаче наружных ограждающих конструкций

4.1 Общие положения

4.1.1 Приведенное сопротивление теплопередаче наружной неоднородной ограждающей конструкции здания , м·°С/Вт, представляет собой основную теплозащитную характеристику наружного ограждения, в основу расчета которого положена усредненная по площади плотность теплового потока , Вт/м, проходящего через ограждение в расчетных условиях эксплуатации

Численные значения теплового потока, проходящего через неоднородное ограждение, определяют на основе расчета одно-, двух- и трехмерных температурных полей. Участки многослойного ограждения, имеющие однородные теплоизоляционные, конструкционные и прочие слои, расположенные перпендикулярно к направлению теплового потока, возникающего при эксплуатации здания, и удаленные от всякого рода теплотехнических неоднородностей и теплопроводных включений, обеспечивают равномерную по площади теплопередачу и характеризуются условным (по глади) сопротивлением теплопередаче.

При проектировании наружных ограждающих конструкций здания в силу конструктивных особенностей оболочки здания и видов наружных ограждений возникают различного рода теплотехнические неоднородности: они в силу конструктивных особенностей примыкания наружных и внутренних ограждений имеют преимущественно линейный характер (наружные и внутренние углы наружных стен, примыкания наружных стен к внутренним стенам и перекрытиям, примыкания наружных стен к покрытиям и перекрытиям первого этажа над холодным подвалом или уложенным по грунту, стыки между соседними панелями, откосы проемов). Теплопотери через эти виды теплотехнических неоднородностей определяют расчетом на ЭВМ двухмерных стационарных температурных полей фрагментов наружных ограждений при расчетных значениях температур разделяемых воздушных сред и условиях теплообмена на поверхностях расчетного фрагмента.

В многослойных ограждающих конструкциях для обеспечения конструктивной целостности и устойчивости в эксплуатационных условиях вводят различные типы связей между облицовочными слоями (соединительные ребра, в т.ч. перфорированные, гибкие стержневые связи, шпонки). К этой категории неоднородностей относятся угловые примыкания откосов проемов, примыкания угла наружных стен к покрытию или перекрытию первого этажа. Теплопотери через эти виды теплопроводных включений или примыканий определяют расчетом на ЭВМ двухмерных (в цилиндрических координатах) или трехмерных стационарных температурных полей фрагментов при расчетных значениях температур и условиях теплообмена.

4.1.2 Таким образом, теплотехнический расчет неоднородных наружных ограждающих конструкций, содержащих углы, проемы с заполнениями (оконными и дверными блоками, воротами), соединительные элементы между наружными облицовочными слоями (ребра, шпонки, стержневые связи), сквозные и несквозные теплопроводные включения, выполняют на основе расчета температурных полей. Приведенное сопротивление теплопередаче , м·°С/Вт, неоднородной ограждающей конструкции или ее участка (фрагмента) вычисляют по формуле

где — площадь неоднородной ограждающей конструкции (стены, окна, двери, ворот) или ее фрагмента, м, по размерам с внутренней стороны, включая откосы оконных и дверных проемов (для стен);

— суммарный тепловой поток через конструкцию или ее фрагмент площадью , Вт, определяемый на основе расчета температурного поля на ЭВМ либо экспериментально по ГОСТ 26254 или ГОСТ 26602.1 с внутренней стороны;

— коэффициент, принимаемый в зависимости от положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху, принимаемый в соответствии с таблицей 6 [1] с учетом примечания к этой таблице;

— расчетная температура внутреннего воздуха, °С, принимаемая по ГОСТ 30494;

— расчетная температура наружного воздуха, °С, принимаемая по средней температуре наиболее холодной пятидневки с обеспеченностью 0,92, см. [1].

4.1.3 На основе расчета на ЭВМ температурных полей ограждающей конструкции определяют также температуры на их поверхностях . По полученным значениям устанавливают соответствие требуемым температурным характеристикам наружных ограждений:

— расчетному перепаду температур между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, определяемому по формуле (4) [1]; при этом расчетный перепад температур не должен превышать нормируемых значений , установленных в таблице 5 [1];

Коэффициенты морозостойкости, теплоемкости и теплопроводности кирпича

Сфера применения материала определяется его эксплуатационными характеристиками. Комплекс рассматриваемых свойств должны соответствовать требованиям, предъявляемых строительному кирпичу при сооружении внешних стен, перекрытий, фундамента. Возведение конструкций подразумевает выбор изделий различного назначения:

  • Силикатный – рядовой, лицевой, пустотелый, полнотелый.
  • Керамический – жаростойкий и все разновидности предыдущего вида.
  • Клинкерный – для облицовки фасадов.

Технические параметры кирпича

Показатели определяют энергопотребление дома, затраты на обогрев помещений. Проектирование сооружений, расчеты ограждающих конструкций учитывают эти параметры.

Коэффициент теплопроводности

Материалы обладают свойством проводить тепло от нагретой поверхности в более холодную область. Процесс происходит в результате электромагнитного взаимодействия атомов, электронов и квазичастиц (фононы). Основной показатель величины – коэффициент теплопроводности (λ, Вт/), определяемый как количество теплоты, проходящее через единицу площади сечения за единичный интервал времени. Малое значение положительно влияет на сохранение теплового режима.

Согласно ГОСТ 530-2012 эффективность кладки в сухом состоянии характеризуется коэффициентом теплопроводности:

  • ≤ 0.20 – высокая;
  • 0.2 < λ ≤ 0.24 – повышенная;
  • 0.24 — 0.36 – эффективная;
  • 0.36 — 0.46 – условно-эффективная;
  • ˃ 0.46 – обыкновенная (малоэффективная).

Чем больше плотность, тем выше теплопроводность – не совсем верное утверждение. Структура содержит закрытые поры и полости (пустотелый), наполненные воздухом с коэффициентом ≈ 0,026. Благодаря этому, изделия со щелевыми отверстиями лучше поддерживают тепловой режим внутри сооружений. В инженерных расчетах необходимо учитывать величину теплопроводности кладочной смеси, значение показателя выбирают от 0.47 и выше, в зависимости от состава.

Сравнение кирпича разного типа

Теплопроводность красного изделия ниже, чем у силикатного.

Физические процессы нагрева и удержания тепла можно охарактеризовать величинами:

  • Коэффициент теплоотдачи – теплообмен на границе поверхности твердого тела и воздушной среды. Это мощность теплового потока, приходящаяся на плоскость 1 м², обратно пропорциональная разнице температур тела и теплоносителя (воздух). Чем выше теплопроводность, тем больше теплоотдача.
  • Полное тепловое сопротивление – способность противостоять передаче тепла. Значение обратно пропорционально коэффициенту теплопередачи. Исходя из расчетной формулы R = L/λ, легко рассчитать оптимальную толщину кладки. λ – постоянный параметр, R – тепловое сопротивление указано в таблице 4 СП 131.13330.2012 для климатических зон России.

Характеристики керамических блоков

Необходимое количество тепла, подведенного к телу для увеличения температуры на 1 Кельвин – определение понятия «полная теплоемкость». Единица измерения: Дж/К или Дж/°C. Чем больше объем и масса тела (толщина стен и перекрытий), тем выше теплоемкость материала, лучше поддерживается благоприятный температурный режим. Наиболее точно это свойство подтверждают характеристики:

  • Удельная теплоемкость кирпича – количество тепла, необходимое для нагрева единичной массы вещества за единичный интервал времени. Единица измерения: Дж/кг*К или Дж/кг*°C. Используется для инженерных расчетов.
  • Объемная теплоемкость – количество тепла, потребляемое телом единичного объема для нагрева за единицу времени. Измеряется в Дж/м³*К или Дж/кг*°C.

Силикатные кирпичи

Тепловая конвекция непрерывна: радиаторы нагревают воздух, который передает тепло стенам. При понижении температуры в помещениях происходит обратный процесс. Увеличение удельной теплоемкости, снижение коэффициента теплопроводности стен обеспечивают сокращение затрат на обогрев дома. Толщина кладки может быть оптимизирована рядом действий:

  • Применение теплоизоляции.
  • Нанесение штукатурки.
  • Использование пустотного кирпича или камня (исключено для фундамента здания).
  • Кладочный раствор с оптимальными теплотехническими параметрами.

Теплопроводность блоков

Таблица с характеристиками различных видов кладок. Использованы данные СП 50.13330.2012:

Обыкновенный г линяный кирпич на различном кладочном растворе

Пустотный красный различной плотности (кг/м³) на ЦПС

Морозостойкость кирпичной кладки

Устойчивость к воздействию отрицательных температур – показатель, влияющий на прочность и долговечность конструкции. Кладка в процессе эксплуатации насыщается влагой. В зимний период вода, проникая в поры, превращается в лед, увеличивается в объеме и разрывает полость, в которой находится – происходит разрушение. Морозоустойчивость, как правило, низкая, водопоглощение не должно превышать 20 %.

Морозостойкость блоков

Определение количества циклов замораживания и оттаивания без потери прочности каждого вида изделия позволяет выявить морозоустойчивость (F). Значение получают опытным путем. В лаборатории проводят многократную заморозку в холодильных камерах и естественное оттаивание образцов.

Коэффициент морозостойкости – отношение прочности на сжатие опытного и исходного элемента. Изменение показателя более 5 %, наличие трещин, отколов сигнализируют об окончании испытаний. Марки изделий содержат характеристики по морозостойкости: F15 (20, 25, 35, 50, 75, 100, 150). Цифровой параметр указывает на количество циклов: чем выше число, тем надежнее возводимая система.

Приобретение кирпича высокой марки морозостойкости опустошит бюджет, заложенный на строительство. Меры по улучшению свойств конструкций, продлению срока эксплуатации в зонах холодного климата без увеличения расходов:

  • Применение паро- и гидроизоляции.
  • Обработка кладки гидрофобными составами.
  • Контроль, своевременное исправление дефектов.
  • Надежная гидроизоляция фундамента.

От выбора материала для кладки, его удельной теплоемкости, теплопроводности, морозостойкости зависит срок и комфорт эксплуатации дома. Сложные расчеты, составление сметы расходов лучше доверить опытным специалистам, имеющим опыт в строительстве и проектировании.

голоса
Рейтинг статьи
Читайте так же:
Можно ли класть утеплитель без пароизоляции
Ссылка на основную публикацию